Minggu, 26 Juli 2020

metode pembuktian matematika

Metode Pembuktian Matematika


A.       Pembuktian langsung
B.      Pembuktian tidak langsung
C.       Induksi matematika

A.    Pembuktian Langsung Pembuktian langsung 
  •        dalam matematika dilakukan dengan menguraikan premis dengan dilandasi oleh definisi, fakta, aksioma yang ada untuk sampai pada suatu kesimpulan (konklusi)
Contoh : Buktikan bahwa : “jika n bilangan ganjil, maka n2 bilangan ganjil”.
Bukti : Diketahui bahwa n bilangan ganjilmaka dapat dituliskan n = 2k+1,
     dengan k bilangan bulat
     sehingga  n2 = (2k+1) 2 = 4k2 + 4k + 1 = 2(2k2+2k) + 1
     Bentuk 2(2k2+2k) + 1 adalah bilangan ganjil
     Jadi n2 bilangan ganjil

B.    Pembuktian Tidak Langsung 
  • Pembuktian tidak langsung atau pembuktian dengan kemustahilan (reductio ad absurdum) yang dibahas ada 2 cara yaitu :
1)        Kontraposisi
Pembuktian tidak langsung kontraposisi digunakan untuk membuktikan pernyataan implikasi
Untuk membuktikan pernyataan implikasi kita cukup membuktikan kontraposisi dari implikasi pernyataan tersebut
Secara simbolik : p → q ≡ ~q → ~p  
Untuk membuktikan kebenaran p → q, maka kita cukup membuktikan
kebenaran ~q → ~p
Contoh : Buktikan bahwa: “jika n2 bilangan ganjil, maka n bilangan ganjil”.
Bukti : Untuk membuktikan pernyataan tersebut kita akan membuktikan
            kebenaran kontraposisinya.

Misalnya : p = n2 bilangan ganjil dan q = n bilangan ganjil
Apakah p → q benar ? Kita akan periksa apakah ~q → ~p benar ?
Andaikan n bukan bilangan ganjil, maka n bilangan genap, sehingga n dinyatakan dengan sebagai n = 2k, k bilangan asli.
Akibatnya n2 = (2k)2 = 4k2 = 2(2k2).
Artinya n2  bilangan genap.
Jadi pengandaian bahwa n bukan bilangan ganjil adalah BENAR,
sehingga kontraposisi ~q →~p juga BENAR.
Jadi implikasi p → q benar , ini berarti n2 bilanganganjil maka n adalah
bilangan ganjil.

2)      Kontradiksi
  • Pembuktian tidak langsung dengan kontradiksi dilakukan dengan mengandaikan konklusi yang salah dan menemukan suatu hal yang bertentangan dengan fakta, aksioma, atau teorema yang adaPengandaian konklusi salah tidak bisa diterima dan akibatnya konklusi yang ada benar berdasarkan premis yang ada
Contoh : Buktikan bahwa : “Untuk semua bilangan bulat n, jika n2 ganjil, maka n ganjil”.
Bukti : Andaikan bahwa q salah, atau ~q benar yaitu n bukan bilangan bulat
ganjil, maka n bilangan bulat genap.
Dapat dimisalkan n = 2k dengan k bilangan bulat.
Dengan demikian maka n2 = (2k)2 atau n2 = 4k2
Ini menunjukkan bahwa  n2 = bilangan bulat genap (~p)
Terjadilah suatu kontradiksi : yang diketahui p benar, sedangdari langkah-langkah logis diturunkan ~p benar.
Oleh karena itu kontradiksi tidak boleh terjadi, maka pengandaian harus diingkar yang berarti ~q salah atau q benar.

C.         Induksi Matematika

  • Induksi matematika adalah salah satu metode untuk membuktikan suatu pernyataan tertentu yang berlaku untuk bilangan asli
Prinsip Induksi Matematika :
Misalkan P(n) adalah suatu pernyataan yang menyangkut bilangan asli n.
Apabila P(1) benar, dan apabila P(k) benar maka P(k+1) juga benar, berakibat P(n) benar untuk semua n.
Contoh : Buktikan bahwa : “1 + 3 + 5 +  … + (2n-1) = n2, untuk semua bilangan
                 asli n”.
Bukti : Misalkan P(n) adalah 1 + 3 + 5 + 7 + … + (2n-1) = n2
P(1) benar, sebab 1 = 1
Bila P(k) benar, yaitu apabila ; 1 + 3 + 5 + 7 + … + (2k-1) = k2maka
1 + 3 + 5 + 7 + … + 2k-1 + 2k+1= (1 + 3 + 5 + 7 + … + 2k- 1 + 2k+1.
= k2 + 2k + 1
= (k + 1)2
Sehingga P(k+1) benar

Minggu, 12 Juli 2020

LOGIKA MATEMATIKA


Logika Matematika



Dalam logika matematika, kita belajar untuk mementukan nilai dari suatu pernyataan, baik bernilai benar atau salah. Pernyataan sendiri terbagi menjadi 2 jenis, yaitu:
  1. Pernyataan tertutup (kalimat tertutup)
Pernyataan tertutup atau kalimat tertutup adalah suatu pernyataan yang sudah memiliki nilai benar atau salah.
Contoh:
“5 adalah bilangan genap”, kalimat tersebut bernilai salah karena yang benar adalah “5 adalah bilangan ganjil”.
  1. Pernyataan terbuka (kalimat terbuka)
Pernyataan terbuka atau kalimat terbuka adalah suatu pernyataan yang belum dapat ditentukan nilai kebenarannya karena adanya suatu perubah atau variabel.
Contoh logika matematika:
p(x): 3x+1 > 6, x \in \mathbb{R}
Saat x = 1, maka p(1): 3(1) + 1 > 6 bernilai salah
Saat x = 2, maka p(2): 3(2) + 1 > 6 bernilai benar

Ingkaran atau Negasi dari suatu Pernyataan

Ingkaran atau negasi adalah kebalikan nilai dari suatu pernyataan, dimana ketika suatu pernyataan bernilai benar, maka negasinya bernilai salah dan saat suatu pernyataan bernilai salah, negasinya bernilai benar. Ingkaran atau negasi dari pernyataan pdilambangkan dengan \sim p.

Pernyataan Kuantor

Pernyataan kuantor adalah bentuk logika matematika berupa pernyataan yang memiliki kuantitas. Dalam pernyataan kuantor, pada umumnya terdapat kata semua, seluruh, setiap, beberapa, ada, dan sebagian.
Kata-kata yang senilai dengan seluruh, semua, setiap termasuk dalam kuantor universal dan kata-kata yang senilai dengan sebagian, beberapa, ada termasuk dalam kuantor eksistensial. Kuantor universal dan kuantor eksistensial saling beringkaran.
p: semua orang adalah sarjana (Kuantor universal)
\sim p: sebagian orang adalah tidak sarjana

Pernyataan Majemuk, Bentuk Ekuivalen dan Ingkarannya

Dalam logika matematika, beberapa pernyataan dapat dibentuk menjadi satu pernyataan dengan menggunakan kata penghubung logika seperti dan, atau, maka dan jika dan hanya jika. Pernyataan gabungan tersebut disebut dengan pernyataan majemuk.
Dalam logika matematika, kata hubung tersebur masing-masing memiliki lambang dan istilah sendiri.
kata hubung pernyataan majemuk

Tabel Kebenaran Konjungsi

tabel kebenaran konjungsi
Dari tabel diatas dapat disimpulkan bahwa sifat dari konjungsi adalah bernilai benar jika kedua pernyataan penyusun dari peryataan majemuk keduanya bernilai benar.

Tabel Kebenaran Disjungsi

logika matematika disjungsi
Dari tabel diatas dapat disimpulkan bahwa sifat dari disjungsi adalah bernilai salah jika kedua pernyataan penyusun dari peryataan majemuk keduanya bernilai salah.

Tabel Kebenaran Implikasi

tabel implikasi
Pada sifat implikasi ini, p \Rightarrow q, p disebut sebagai hipotesa dan q sebagai konklusi. Pada implikasi ini akan bernilai salah ketika konklusi salah dan hipotesa benar.

Tabel Kebenaran Biimplikasi

tabel biimplikasi
Pada sifat biimplikasi, penyataan majemuk akan bernilai benar jika kedua pernyataan penyusunnya bernilai sama, keduanya benar atau keduanya salah.

Tautologi dan Kontradiksi

Tautologi adalah pernyataan majemuk yang selalu benar untuk semua kemungkinan yang ada dan kontradiksi adalah kebalikannya, yaitu pernyataan majemuk yang bernilai salah untuk semua kemungkinan yang ada.
Bentuk Ekuivalen Pernyataan Majemuk
Pernyataan majemuk yang memiliki nilai sama untuk semau kemungkinannya dikatakan ekuivalen. Notasi ekuivalen dalam logika matematika adalah “\equiv“.
Bentuk-bentuk pernyataan yang saling ekuivalen adalah:
bentuk ekuivalen tabel kebenaran

Ingkaran Pernyataan Majemuk

Ingkaran Konjungsi: \sim (p \wedge q) \equiv \sim p \vee \sim q
Ingkaran Disjungsi: \sim (p \vee q) \equiv \sim p \wedge \sim q
Ingkaran Implikasi: \sim (p \Rightarrow q) \equiv p \wedge \sim q
Ingkaran Biimplikasi: \sim (p \Leftrightarrow q) \equiv (p \wedge \sim q) \vee (q \wedge \sim p)

Konvers, Invers dan Kontraposisi

Konvers, invers dan kontraposisi adalah bentuk lain dari implikasi, dimana:
Konvers dari p \Rightarrow q adalah q \Rightarrow p
Invers dari p \Rightarrow q adalah \sim p \Rightarrow \sim q
Kontraposisi dari p \Rightarrow q adalah \sim q \Rightarrow \sim p

Penarikan Kesimpulan (Logika Matematika)

Penarikan kesimpulan adalah konklusi dari beberapa pernyataan majemuk (premis) yang saling terkait. Dalam penarikan kesimpulan terdiri dari beberapa cara, yaitu:
penarikan kesimpulan logika matematika

Contoh Soal Logika Matematika:

Soal 1:
Premis 1 : Jika Andi rajin belajar, maka Andi juara kelas
Premis 2 : Andi rajin belajar
Kesimpulan dari kedua premis diatas adalah ….
Jawab:
Premis 1               : p \Rightarrow q
Premis 2               : p
Kesimpulan          : q (modus ponens)
Jadi kesimpulannya adalah Andi juara kelas.
Soal 2:
Premis 1 : Jika hari hujan, maka sekolah libur
Premis 2   : sekolah tidak libur
Kesimpulan dari kedua premis diatas adalah ….
Jawab:
Premis 1               : p \Rightarrow q
Premis 2               : \sim q
Kesimpulan          : (modus tollens)
Jadi kesimpulannya adalah hari tidak hujan.
Soal logika matematika 3:
Premis 1 : Jika Ani nakal, maka Ibu marah
Premis 2   : Jika Ibu marah, maka Ani tidak dapat uang saku
Kesimpulan dari kedua premis diatas adalah …
Jawab:
Premis 1               : p \Rightarrow q
Premis 2               : q \Rightarrow r
Kesimpulan          : p \Rightarrow r(silogisme)
Jadi kesimpulannya adalah Jika Ani nakal, maka Ani tidak dapat uang saku.

pembelajaran online

 Nama : Tabitha Fransisca R N Kelas  : XI IPS 3 Absen 35       pendapat saya tentang pembelajaran secara online ini ada positif dan negatif....