Minggu, 23 Agustus 2020

MENENTUKAN NILAI OPTIMUM

 soal cerita dan penyelesaiannya yang terkait dengan nilai optimum proram linear :


contoh 1.

 Untuk memproduksi sepeda jenis A dengan harga jual Rp.600.000 suatu perusahaan membutuhkan biaya Rp. 200.000 dan waktu 20 jam. Sedangkan sepeda jenis B dengan harga jual Rp. 800.000 membutuhkan biaya Rp. 100.000 dengan waktu 30 jam. Jika dana yang tersedia Rp. 1.200.000 dan waktu kerja 240 jam per bulan, maka tentukanlah hasil penjualan maksimum yang diperoleh tiap bulan


Jawab
Misalkan
x = banyaknya sepeda jenis A
y = banyaknya sepeda jenis B
maka dapat disusun kendala biaya dan waktu produksi sebagai berikut:
200000x + 100000y ≤ 1200000
20x + 30y ≤ 240
x ≥ 0
y ≥ 0
Jika disederhanakan menjadi :
2x + y ≤ 12
2x + 3y ≤ 24
x ≥ 0

y ≥ 0
Fungsi penjualan : f(x, y) = 600000x + 800000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 8)
Titik C koordinatnya adalah C(6, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena 2x + y = 12 maka 2x + 6 = 12, sehingga 2x = 6, jadi  x = 3
Jadi koordinat titik B adalah B(3, 6)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 600000x + 800000y, sehingga diperoleh :
A(0, 8) → f(A) = 600000(0) + 800000(8) = 6.400.000
B(6, 2) → f(B) = 600000(6) + 800000(2) = 5.200.000
C(3, 6) → f(C) = 600000(3) + 800000(6) = 6.600.000
Jadi hasil penjualan maksimum yang diperoleh tiap bulan adalah Rp. 6.600.000

contoh 2. 

Seorang anak diharuskan memakan dua jenis tablet tiap hari. Tablet pertama mengandung 2 unit vitamin A dan 2 unit vitamin B, sedangkan tablet kedua mengandung 3 unit vitamin A dan 1 unit vitamin B. Dalam satu hari anak itu memerlukan paling sedikit 12 unit vitamin A dan 8 unit vitamin B. Jika harga tablet pertama Rp. 500 perbutir dan tablet kedua Rp. 1.000 perbutir maka agar pengeluaran minimum banyak tablet pertama yang harus dibeli adalah …


Jawab
Misalkan x = banyaknya tablet jenis pertama
y = banyaknya tablet jenis kedua
maka dapat disusun kendala kebutuhan vitamin A dan vitamin B sebagai berikut:
Dari tabel di atas dapat disusun kendala, yakni :
2x + 3y ≥ 12
2x + y ≥ 8
x ≥ 0
y ≥ 0
Fungsi pengeluaran f(x, y) = 500x + 1000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas
Titik A koordinatnya adalah A(0, 8)
Titik C koordinatnya adalah C(6, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena 2x + y = 8 maka 2x + 2 = 8, sehingga 2x = 6 , x =3
Jadi koordinat titik B adalah B(3, 2)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 500x + 1000y, sehingga diperoleh :
A(0, 8) → f(A) = 500(0) + 1000(8) = 8.000
B(3, 2) → f(B) = 500(3) + 1000(2) = 3.500
C(6, 0) → f(C) = 500(6) + 1000(0) = 3.000
Jadi besarnya pengeluaran minimum Rp. 3.000 didapat jika dibeli 6 tablet pertama

contoh 3.

 Seorang pedagang minuman menjual dua jenis minuman ringan pada suatu tempat yang dapat menampung 500 botol minuman. Harga beli minuman jenis A dan jenis B masing-masing Rp. 2000 dan Rp 4000 per botol. Jika ia memiliki modal Rp. 1.600.000 serta akan memperoleh laba perbuah Rp. 800 untuk minuman jenis A dan Rp. 600 untuk minuman jenis B, maka berapakah banyaknya minuman minuman jenis A dan B agar diperoleh laba maksimum ?

Jawab
Misalkan
x = banyaknya minuman jenis A
y = banyaknya minuman jenis B
maka dapat disusun kendala modal dan kapasitas kios sebagai berikut:
x + y ≤ 500
2000x + 4000y ≤ 1.600.000
x ≥ 0
y ≥ 0
Jika disederhanakan menjadi :
x + y ≤ 500
x + 2y ≤ 800
x ≥ 0
y ≥ 0
Fungsi laba : f(x, y) = 800x + 600y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 400)
Titik C koordinatnya adalah C(500, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena x + y = 500 maka x + 300 = 500, sehingga x = 200
Jadi koordinat titik B adalah B(200, 300)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 800x + 600y, sehingga diperoleh :
A(0, 400)     → f(A) = 800(0) + 600(400) = 240.000
B(200, 300) → f(B) = 800(200) + 600(300) = 360.000
C(500, 0)     → f(C) = 800(500) + 600(0) = 400.000
Jadi keuntungan maksimum yakni sebesar Rp. 400.000 diperoleh jika dijual minuman jenis A saja sebanyak 500 botol

contoh 4.  

Luas daerah parkir 1.760 m² . Luas rata-rata untuk mobil kecil 4 m² dan mobil besar 20 m² . Daya tampung maksimum hanya 200 kendaraan, biaya parker mobil kecil Rp. 1000/jam dan mobil besar Rp.2000/jam. Jika dalam satu jam terisi penuh dan tidak ada kendaraan yang pergi dan dating, maka hasil maksimum tempat parkir itu adalah:

A. Rp.176.000,- 

B. Rp. 200.000,-

C. Rp.260.000,- 

D. Rp. 300.000,-

E. Rp.340.000,-

Jawaban : C

Pembahasan : 

Dibuat persamaan-persamaannya terlebih dahulu:

Misal mobil kecil = x dan mobil besar = y

4 x + 20 y ≤ 1760

x + 5y ≤ 440 …..(1)

x + y ≤ 200 ….(2)

nilai maksimum 1000x + 2000y = ?

buat sketsa grafiknya:

soal program linear dan jawaban no 11


contoh 5

Seorang tukang roti mempunyai bahan A,B dan C masing-masing sebanyak 160 kg, 110 kg dan 150 kg.

  • Roti I memerlukan 2 kg bahan A, 1 kg bahan B dan 1 Kg bahan C
  • Roti II memerlukan 1 kg bahan A, 2 kg bahan B dan 3 Kg bahan C

Sebuah roti I dijual dengan harga Rp.30.000 dan sebuah roti II dijual dengan harga Rp.50.000, pendapatan maksimum yang dpat diperoleh tukang roti tersebut adalah…

A. Rp. 8000.000,- 

B. Rp. 4500.000,-

C. Rp. 3900.000,- 

D. Rp. 3100.000,-

E. Rp. 2900.000,-

Jawaban : D

Pembahasan : 

Buat persamaan :

Misal roti I = x dan roti II = y didapat persamaan sbb:

  • 2x + y ≤ 160 …..(1)
  • x + 2y ≤ 110 …..(2)
  • x + 3y ≤ 150 ….(3)

buat sketsa grafiknya:

soal program linear dan jawaban no 10

Daerah yang diarsir adalah himpunan penyelesaian dari tiga grafik tsb. Didapat 4 titik ekstrim yaitu (0,50), (80,0), titik A dan titik B

perpotongan (1) dan (2)  → titik B

soal program linear dan jawaban no 10-1

contoh 6. 

Pedagang buah memiliki modal Rp. 1.000.000,00 untuk membeli apel dan pisang untuk dijual kembali. Harga beli tiap kg apel Rp 4000,00 dan pisang Rp 1.600,00. Tempatnya hanya bisa menampung 400 kg buah. Tentukan jumlah apel dan pisang agar kapasitas maksimum.

Pembahasan 3:

Diketahui:

contoh soal model matematika

Dengan syarat:

  • Kapasitas tempat: x + y ≤ 400
  • Modal: 4.000x + 1.600y ≤ 1.000.000 5x + 2y \le 1.250
  • x ≥ 0
  • y ≥ 0

Diagramnya:

grafik fungsi linear

Titik ekstrim:

  • A(0, 400) bukan optimum karena tidak ada apel
  • C(250, 0) bukan optimum karena tidak ada pisang
  • B(x_B, y_B) dengan metode eliminasi 2 persamaan diatas diperoleh: penyelesaian pertidaksamaan program linear

Sehingga jumlah masimum:

  • Apel: 150 kg
  • Pisang: 250 kg.
contoh 7

Uang Adinda Rp 40.000,00 lebih banyak dari uang Binary ditambah dua kali uang Cindy. Jumlah uang Adinda, Binary, dan Cindy Rp 200.000. Selisih uang Binary dan Cindy Rp 10.000,00. Jumlah uang Adinda dan Binary adalah ...
  1. Rp 122.000,00
  2. Rp 126.000,00
  3. Rp 156.000,00
  4. Rp 162.000,00
  5. Rp 172.000,00

Pembahasan :
Kita lakukan pemisalan :
  • Adinda = a
  • Binary = b
  • Cindy =c

Karena ada tiga variabel, maka persamaan yang kita bentuk adalah persamaan linear tiga variabel. Ada tiga persamaan yang kita peroleh dari soal yaitu :
(1) a = 40.000 + b + 2c → a - b - 2c = 40.000
(2) a + b + c = 200.000
(3) b - c = 10.000

Dari persamaan (1) ke (2) :
a - b - 2c = 40.000
a + b + c = 200.000 -
-2b - 3c = -160.000  ......(4)

Dari persamaan (3) dan (4) :
   b -   c = 10.000       |x3
-2b - 3c = -160.000   |x1

 3b - 3c = 30.000
-2b - 3c = -160.000   -
5b  = 190.000
b = 38.000

Selanjutnya substitusi b = 38.000 ke persamaan (3) :
⇒ b - c = 10.000
⇒ 38.000 - c = 10.000
⇒ c = 28.000

Pada soal ditanya jumlah uang Adinda dan Binary (a + b) Nilai c sudah kita peroleh, maka dari persamaan (2) kita peroleh :
⇒ a + b + c = 200.000
⇒ a + b = 200.000 - c
⇒ a + b = 200.000 - 28.000
⇒ a + b = 172.000
Jadi jumlah uang Adinda dan Binary adalah Rp 172.000,00

contoh 8

Harga 2 kg mangga, 2kg jeruk, dan 1 kg anggur adalah Rp 70.000,00. Harga 1 kg mangga, 2 kg jeruk, dan 2 kg anggur adalah Rp 90.000,00. Jika harga 2 kg mangga, 2kg jeruk, dan 3 kg anggur Rp 130.000,00, maka harga 1 kg jeruk adalah ....
  1. Rp 5.000,00
  2. Rp 7.500,00
  3. Rp 10.000,00
  4. Rp 12.000,00
  5. Rp 15.000,00

Pembahasan :
Kita lakukan pemisalan :
  • Mangga = x
  • Jeruk = y
  • Anggur = z

Karena ada tiga variabel, maka persamaan yang kita bentuk adalah persamaan linear tiga variabel. Ada tiga persamaan yang kita peroleh dari soal yaitu :
(1) 2x + 2y + z = 70.000
(2) x + 2y + 2z = 90.000
(3) 2x + 2y + 3z = 130.000

Dari persamaan (1) dan (2) :
2x + 2y + z = 70.000   |x1
x + 2y + 2z = 90.000   |x2

2x + 2y + z = 70.000
2x + 4y + 4z = 180.000   -
-2y - 3z = -110.000  ......(4)

Dari persamaan (2) dan (3) :
x + 2y + 2z = 90.000       |x2
2x + 2y + 3z = 130.000   |x1

2x + 4y + 4z = 180.000
2x + 2y + 3z = 130.000   -
2y + z = 50.000  ......(5)

Ingat bahwa kita mau mencari harga jeruk (y) maka yang harus kita eliminasi selanjutnya adalah z.
Dari persamaan (4) dan (5) :
-2y - 3z = -110.000   |x1
2y + z = 50.000         |x3

-2y - 3z = -110.000
6y + 3z = 150.000   +
4y  = 40.000
y  = 10.000

Jadi, harga 1 kg jeruk adalah Rp 10.00,00

contoh 9. . 

Luas daerah parkir 360 m2. Luas rata-rata sebuah mobil 6 m2 dan luas rata – rata bus 24 m2. Daerah parkir tersebut dapat memuat paling banyak 30 kendaraan roda empat (mobil dan bus). Jika tarif parkir mobil Rp2.000,00 dan tarif parkir bus Rp5.000,00 maka pendapatan terbesar yang dapat diperoleh adalah …. 

Pembahasannya
Misalkan:
  • x = banyak mobil
  • y = banyak bus

Perhatikan tabel di bawah!

Luas daerah parkir 360 m2. Luas rata-rata sebuah mobil 6 m2 dan luas rata – rata bus 24 m2. Daerah parkir tersebut dapat memuat paling banyak 30 kendaraan roda empat (mobil dan bus). Jika tarif parkir mobil Rp2.000,00 dan tarif parkir bus Rp5.000,00 maka pendapatan terbesar yang dapat diperoleh adalah …. 

Pembahasannya
Misalkan:
  • x = banyak mobil
  • y = banyak bus

Perhatikan tabel di bawah!

Luas daerah parkir 360 m2. Luas rata-rata sebuah mobil 6 m2 dan luas rata – rata bus 24 m2. Daerah parkir tersebut dapat memuat paling banyak 30 kendaraan roda empat (mobil dan bus). Jika tarif parkir mobil Rp2.000,00 dan tarif parkir bus Rp5.000,00 maka pendapatan terbesar yang dapat diperoleh adalah …. 

Pembahasannya
Misalkan:
  • x = banyak mobil
  • y = banyak bus

Perhatikan tabel di bawah!

Pemodelan Matematika pada Program Linear

Diperoleh dua persamaan:

  • x + y ≤ 30
  • 6x + 24y ≤ 360 → x + 4y ≤ 60

Menentukan daerah yang memenuhi pertidaksamaan:

Contoh Soal Ujian Nasional Program Linear

Akan ditentukan nilai maksimum dengan metode titik sudut.

Titik koordinat O, A, dan C dapat diperoleh dengan melihat gambar, yaitu O(0,0), A(0, 15), dan C(30,0). Untuk koordinat B dapat diperoleh dengan menggunakan eliminasi dan substitusi.

Metode eliminasi

Substitusi nilai y = 10 pada persamaan x + y = 30 untuk mendapatkan nilai x.

x + y = 30
x + 10 = 30
x = 30 – 10 = 20

Koordinat titik B adalah (20, 10)

Perhitungan keuntungan maksimal yang dapat diperoleh:


Fungsi Objektif Pembahasan Soal Ujian Nasional Program Linear SMA

Jawaban: E

contoh 10

Biaya produksi satu buah payung jenis A adalah Rp20.000,00 per buah, sedangkan biaya satu buah produksi payung jenis B adalah Rp30.000,00. Seorang pengusaha akan membuat payung A dengan jumlah tidak kurang dari 40 buah. Sedangkan banyaknya payung jenis B yang akan diproduksi minimal adalah dari 50 buah. Jumlah maksimal produksi kedua payung tersebut adalah 100 buah. Biaya minimum yang dikeluarkan untuk melakukan produksi kedua payung sesuai ketentuan tersebut adalah ….

A.     Rp2.000.000,00
B.     Rp2.300.000,00
C.     Rp2.200.000,00
D.     Rp2.100.000,00
E.     Rp2.000.000,00

Pembahasan:

Pemisalan:

  • x = banyak payung A
  • y = banyak payung B

Model matematika dari permasalahan tersebut adalah:

Fungsi tujuan: meminimumkan f(x,y) = 20.000x + 30.000y

Fungsi kendala:

  • x ≥ 40
  • y ≥ 50
  • x + y ≤ 100

Daerah penyelesaian yang memenuhi permasalahan:

Daerah Penyelesaian Metode Garis Selidik

Nilai minimum akan diperoleh melalui titik koordinat yang dilalui garis selidik yang pertama kali, yaitu titik A(40, 50).

Sehingga, biaya produksi minimum adalah

f(40,50) = 20.000(40) + 30.000(50)
f(40,50) = 800.000 + 1.500.000
f(40,50) = 2.300.000

Jawaban: B


daftar pustaka :

https://www.materimatematika.com/2017/10/menafsirkan-nilai-optimum-dalam-program.html

https://www.studiobelajar.com/program-linear/

https://idschool.net/sma/contoh-soal-dan-pembahasan-program-linear-matematika-sma/

https://soalkimia.com/contoh-soal-program-linear/

Tidak ada komentar:

Posting Komentar

pembelajaran online

 Nama : Tabitha Fransisca R N Kelas  : XI IPS 3 Absen 35       pendapat saya tentang pembelajaran secara online ini ada positif dan negatif....