Senin, 25 Januari 2021

PENGERTIAN TURUNAN DAN SIFAT-SIFATNYA BERSAMA CONTOH SOALNYA

 

NAMA : TABITHA FRANSISCA R.N (35)

KELAS : XI IPS 3 

Definisi Turunan

Turunan merupakan suatu perhitungan terhadap perubahan nilai fungsi karena perubahan nilai input (variabel).

Turunan dapat disebut juga sebagai diferensial dan proses dalam menentukan turunan suatu fungsi disebut sebagai diferensiasi.

Menggunakan konsep limit yang sudah dipelajari, turunan dapat didefinisikan sebagai

Rumus Turunan

turunan tersebut didefinisikan sebagai limit dari perubahan rata-rata dari nilai fungsi terhadap variabel x.

Selanjutnya akan dijelaskan mengenai contoh penerapan turunan.

Penerapan Turunan

Berikut merupakan beberapa penerapan turunan.

  • Turunan dapat diterapkan untuk menghitung gradien dari garis singgung suatu kurva.
  • Turunan dapat digunakan untuk menentukan interval dimana suatu fungsi naik atau turun.
  • Turunan dapat diterapkan untuk menentukan nilai stasioner suatu fungsi.
  • Turunan dapat diterapkan dalam menyelesaikan permasalahan yang berkaitan dengan persamaaan gerak.
  • Turunan dapat digunakan untuk menyelesaikan permasalahan maksimum-minimum.

Berikut ini akan dijelaskan mengena rumus turunan.

Rumus Turunan

Berikut merupakan beberapa rumus dasar untuk menentukan turunan.

  • f(x) = c, dengan c merupakan konstanta

Turunan dari fungsi tersebut adalah f’(x) = 0.

  • f(x) = x

Turunan dari fungsi tersebut adalah f’(x) = 1.

  • f(x) = axn

Turunan dari fungsi tersebut adalah f’(x) = anxn – 1

  • Penjumlahan fungsi:  h(x) = f(x) + g(x)

Turunan fungsi tersebut yaitu h’(x) = f’(x) + g’(x).

  • Pengurangan fungsi: h(x) = f(x) – g(x)

Turunan fungsi tersebut adalah h’(x) = f’(x) – g’(x)

  • Perkalian konstanta dengan suatu fungsi (kf)(x).

Turunan fungsi tersebut adalah k . f’(x).

Berikut ini akan dijelaskan mengenai turunan fungsi.

Turunan Fungsi

Misalkan terdapat suatu fungsi f(x) = axn. Turunan dari fungsi tersebut yaitu f’(x) = anxn – 1.

Contohnya yaitu:

f(x) = 3x3

turunan dari fungsi tersebut yaitu

f’(x) = 3 (3) x3 – 1 = 9 x2.

Contoh lainnya misalnya g(x) = -5y-3.

Turunan dari fungsi tersebut adalah g’(y) = -5 (-3) y-3 – 1  = 15y-4.

Berikut akan dijelaskan turunan fungsi aljabar.

Turunan Fungsi Aljabar

Pembahasan turunan fungsi aljabar pada bagian ini meliputi turunan dalam bentuk perkalian dan turunan dalam pembagian fungsi aljabar.

Misalkan terdapat perkalian fungsi: h(x) = u(x) . v(x).

Turunan dari fungsi tersebut yaitu h’(x) = u’(x) . v(x) + u(x) . v’(x).

Keterangan:

  • h(x) : fungsi dalam bentuk perkalian fungsi.
  • h’(x) : turunan fungsi bentuk perkalian
  • u(x), v(x) : fungsi dengan variabel x
  • u’(x), v’(x) : turunan fungsi dengan variabel x

Turunan fungsi aljabar dalam bentuk pembagian yaitu:

Misalkan terdapat perkalian fungsi: h(x) = u(x)/v(x). Turunan dari fungsi tersebut adalah

h’(x) = (u’(x) . v(x) – u(x) . v’(x))/v2(x).

Keterangan:

  • h(x) : fungsi dalam bentuk perkalian fungsi.
  • h’(x) : turunan fungsi bentuk perkalian
  • u(x), v(x) : fungsi dengan variabel x
  • u’(x), v’(x) : turunan fungsi dengan variabel x

Turunan Akar

Misalkan terdapat suatu fungsi akar sebagai berikut

Fungsi Turunan

Untuk menentukan turunan dari fungsi tersebut, terlebih dahulu kita ubah ke dalam bentuk fungsi perpangkatan. Bentuk fungsi perpangkatannya yaitu f(x) = xa/b.

Turunan dari fungsi tersebut yaitu f’(x) = a/b . x(a/b) – 1.

Bagaimana jika fungsi berbentuk seperti ini?

Fungsi Akar

Untuk menentukan turunan fungsi di atas, terlebih dahulu diubah ke bentuk perpangkatan.

f(x) = g(x)z/b

Turunan dari fungsi tersebut yaitu f’(x) = a/b . g(x)(a/b) – 1 . g’(x).

Berikut ini akan dijelaskan mengenai turunan parsial.

Turunan Parsial

Apa itu turunan parsial? Turunan parsial merupakan suatu turunan dari fungsi peubah banyak terhadap suatu peubah, sedangkan peubah yang lain dipertahankan.

Misalkan terdapat suatu fungsi: f(x, y) = 2xy, turunan parsial dari fungsi tersebut terhadap variabel x yaitu fx’(x, y) = 2y.

Contoh lainnya yaitu, terdapat fungsi g(x, y) = -3xy2

Turunan parsial terhadap variable y yaitu fy’(x, y) = -6xy.

Berikutnya akan dijelaskan mengenai turunan implisit.

Turunan Implisit

Turunan implisit ditentukan berdasarkan variabel yang terdapat dalam fungsi.

Suatu fungsi dengan variabel x, turunannya : x d/dx.

Suatu fungsi dengan variabel y, turunannya : y d/dy. dy/dx.

Suatu fungsi dengan variabel x dan y, turunannya : xy d/dx + xy d/dy . dy/dx.

sifat turunan

Misalkan f(x) adalah sebuah fungsi, maka turunannya adalah f'(x), dimana

f'(x)=\lim_{x\rightarrow0}\frac{f(x+h)-f(x)}{h}

Turunan dapat diketahui melalui sifat-sifatnya. Berikut sifat-sifat dari turunan.

Sifat-sifat Turunan


1. Jika f(x)=c dimana c adalah konstanta, maka turunannya adalahf'(x)=0

Contoh:\begin{aligned} f(x)&=2 &\rightarrow f'(x)=0\\ f(x)&=13 &\rightarrow f'(x)=0\\ f(x)&=100 &\rightarrow f'(x)=0 \end{aligned}

ggggg

2. Jika f(x)=cx, maka turunannya adalahf'(x)=c

Contoh:\begin{aligned} f(x)&=2x &\rightarrow &f'(x)=2\\ f(x)&=13x &\rightarrow &f'(x)=13\\ f(x)&=100x &\rightarrow &f'(x)=100 \end{aligned}

3. Jika f(x)=x^n maka turunannya adalahf'(x)=nx^{n-1}

Contoh:\begin{aligned} f(x)&=x^4 &\rightarrow &f'(x)=4x^3\\ f(x)&=x^3 &\rightarrow &f'(x)=3x^2\\ f(x)&=x^2 &\rightarrow &f'(x)=2x \end{aligned}

4. Jika f(x)=cx^nmaka turunannya adalahf'(x)=cnx^{n-1}

Contoh:\begin{aligned} f(x)&=2x^4 &\rightarrow &f'(x)=8x^3\\ f(x)&=13x^3 &\rightarrow &f'(x)=39x^2\\ f(x)&=100x^2 &\rightarrow &f'(x)=200x \end{aligned}

5. Jika f(x)=c\,u(x) maka turunannya adalahf'(x)=c\,u'(x)

Contoh:\begin{aligned} f(x)&=4\ln{x}&\rightarrow &f'(x)=4\frac{1}{x}\\ f(x)&=3\cos{x}&\rightarrow &f'(x)=3\sin{x}\\ f(x)&=2\sin{x}&\rightarrow &f'(x)=-2\cos{x} \end{aligned}

6. Jika f(x)=u(x)\pm v(x) maka turunannya adalahf'(x)=u'(x)\pm v'(x)

Contoh:\begin{aligned} f(x)&=2x+x^2&\rightarrow &f'(x)=2+2x\\ f(x)&=x^4-x^3&\rightarrow &f'(x)=4x^3-3x^2\\ f(x)&=\sin{x}+\cos{x}&\rightarrow &f'(x)=\cos{x}-\sin{x} \end{aligned}

7. Jika f(x)=u(x)v(x) maka turunannya adalahf'(x)=u'(x)v(x)+u(x)v'(x)

Contoh:f(x)=x^4x^3Misalkan u(x)=x^4 dan v(x)=x^3, maka u'(x)=4x^3 dan v'(x)=3x^2, sehingga\begin{aligned} f'(x)&=(4x^3)(x^3)+(x^4)(3x^2)\\ &=4x^6+3x^6\\ &=7x^6 \end{aligned}

8. Jika f(x)=\displaystyle\frac{u(x)}{v(x)} maka turunannya adalahf'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}

Contoh:f(x)=\frac{x^4}{x^3}Misalkan u(x)=x^4 dan v(x)=x^3, maka u'(x)=4x^3 dan v'(x)=3x^2, sehingga\begin{aligned} f'(x)&=\frac{(4x^3)(x^3)-(x^4)(3x^2)}{(x^3)^2}\\ &=\frac{4x^6-3x^6}{x^6}\\ &=1 \end{aligned}

9. Jika f(x)={u(x)}^n maka turunannya adalahf'(x)=n(u(x))^{n-1}u'(x)

Contoh:f(x)=(2x+x^2)^4Misalkan u(x)=2x+x^2, sehingga u'(x)=2+2x, makaf'(x)=4\left(2x+x^2\right)^3(2+2x)

Sifat-sifat Turunan Logaritma Natural

\begin{aligned} f(x)&={^c}\log{x}&\rightarrow &f'(x)=\frac{1}{x}.{^c}\log e\\ f(x)&={^c}\log{g(x)}&\rightarrow&f'(x)=\frac{g'(x)}{g(x)}.{^c}\log e \end{aligned}dimana e adalah bilangan euler yang nilainya adalah e=2\text{,}7182818.


Sifat-sifat Turunan Logaritma

\begin{aligned} f(x)&=\sin{x}&\rightarrow&f'(x)=\cos{x}\\ f(x)&=\cos{x}&\rightarrow&f'(x)=-\sin{x}\\ f(x)&=\tan{x}&\rightarrow&f'(x)=\sec^2{x}\\ f(x)&=\cot{x}&\rightarrow&f'(x)=-\csc^2{x}\\ f(x)&=\sec{x}&\rightarrow&f'(x)=\sec{x}.\tan{x}\\ f(x)&=\csc{x}&\rightarrow&f'(x)=-\csc{x}.\cot{x} \end{aligned}Perluasan Turunan Fungsi Trigonometri\begin{aligned} f(x)&=\sin{g(x)}&\rightarrow&f'(x)=g'(x).\cos{g(x)}\\ f(x)&=\cos{g(x)}&\rightarrow&f'(x)=g'(x).-\sin{g(x)}\\ f(x)&=\tan{g(x)}&\rightarrow&f'(x)=g'(x).\sec^2{g(x)}\\ f(x)&=\cot{g(x)}&\rightarrow&f'(x)=g'(x).-\csc^2{g(x)}\\ f(x)&=\sec{g(x)}&\rightarrow&f'(x)=g'(x).\sec{g(x)}.\tan{g(x)}\\ f(x)&=\csc{g(x)}&\rightarrow&f'(x)=g'(x).-\csc{g(x)}.\cot{g(x)} \end{aligned}

contoh soal sifat sifat 

1. Tentukan turunan pertama dari fungsi f(x) = x3 – 2x2 + 3x !

Pembahasan

f’(x) = 3.1.x3-1 – 2.2x2-1 + 1.3.x1-1

f’(x) = 3x2 – 4x + 3

Jadi, turunan pertama dari fungsi f(x) = x3 – 2x2 + 3x adalah f’(x) 3x2 – 4x + 3.

2. Carilah turunan pertama dari fungsi f(x) = (3x + 2)(2x + 5) !

Pembahasan

f(x) = (3x + 2)(2x + 5)

f(x) = 3x.2x + 3x.5 + 2.2x + 2.5

f(x) = 6x2 + 15x + 4x + 10

f(x) = 6x2 + 19x + 10

f’(x) = 2.6.x2-1 + 1.19.x1-1 + 0.10.x0-1

f’(x) = 12x + 19 + 0

f’(x) = 12x + 19

Jadi turunan pertama dari fungsi f(x) = (3x + 2)(2x + 5) adalah f’(x) = 12x + 19 + 0 .

3. Hitunglah turunan pertama dari fungsi f(x) = 4x½ !

Pembahasan

f’(x) = ½.4.x½-1

f’(x) = 2x

Jadi turunan pertama dari fungsi f(x) = 4x½ adalah f’(x) = 2x .

4. Berapakah turunan pertama dari fungsi f(x) = 4 √x3 ?

Pembahasan

f(x) = 4 √x

f(x) = 4 x3/2

f’(x) = 3/2.4.x3/2 – 1

f’(x) = 6x½

f’(x) = 6 √x

Jadi, turunan pertama dari fungsi f(x) = 4 √x3 adalah f’(x) = 6 √x.

5. Tentukan turunan pertama dari fungsi f(x) = (x2 + 3x + 4)(2x + 3).

Pembahasan

f(x) = (x2 + 3x + 4)(2x + 3)

Misal:

u = x2 + 3x + 4

v = 2x + 3

Maka:

u’ = 2x + 3

v’ = 2

Sehingga:

f’(x) = u’v + uv’

f’(x) = (2x + 3)(2x + 3) + (x2 + 3x + 4).2

f’(x) = 4x2 + 12x + 9 + 2x2 + 6x + 8

f’(x) = 6x2 + 18x + 17

Jadi, turunan dari f(x) = (x2 + 3x + 4)(2x + 3) adalah f’(x) = 6x2 + 18x + 17.

6. Carilah turunan pertama dari f(x) = (x3+4) / (2x+3) !

Pembahasan

Misal:

u = x3+4

v = 2x+3

Maka:

u’ = 3x2

v’ = 2

Sehingga

Contoh Soal Turunan 6

Jadi,  turunan pertama dari f(x) = (x3+4) / (2x+3) adalah f’(x) = (4x3 + 9x2 + 8) / (4x2 + 12x + 9).

7. Hitunglah turunan pertama dari f(x) = sin x . cos x !

Pembahasan

Misal:

u = sin x

v = cos x

Maka:

u’ = cos 

v’ = – sin x

Sehingga:

f’(x) = u’v + uv’

f’(x) = cos x cos x + sin x (-sin x)

f’(x) = cos2 x – sin2 x

f’(x) = cos 2x (identitas trigonometri)

Jadi turunan pertama dari f(x) = sin x . cos x adalah f’(x) = cos 2x


DAFTAR PUSTAKA

https://rumuspintar.com/turunan/

https://www.rumusstatistik.com/2018/07/sifat-sifat-turunan.html

https://gurubelajarku.com/contoh-soal-turunan/


pembelajaran online

 Nama : Tabitha Fransisca R N Kelas  : XI IPS 3 Absen 35       pendapat saya tentang pembelajaran secara online ini ada positif dan negatif....